Noticeable hair loss in women can be deeply distressing. Here are some medical treatments that can help.
The main type of hair loss in women is the same as it is men. It's called androgenetic alopecia, or female (or male) pattern hair loss. In men, hair loss usually begins above the temples, and the receding hairline eventually forms a characteristic "M" shape; hair at the top of the head also thins, often progressing to baldness. In women, androgenetic alopecia begins with gradual thinning at the part line, followed by increasing diffuse hair loss radiating from the top of the head. A woman's hairline rarely recedes, and women rarely become bald.
There are many potential causes of hair loss in women , including medical conditions, medications, and physical or emotional stress. If you notice unusual hair loss of any kind, it's important to see your primary care provider or a dermatologist, to determine the cause and appropriate treatment. You may also want to ask your clinician for a referral to a therapist or support group to address emotional difficulties. Hair loss in women can be frustrating, but recent years have seen an increase in resources for coping with the problem.
Patterns of female hair loss
Clinicians use the Ludwig Classification to describe female pattern hair loss. Type I is minimal thinning that can be camouflaged with hair styling techniques. Type II is characterized by decreased volume and noticeable widening of the mid-line part. Type III describes diffuse thinning, with a see-through appearance on the top of the scalp.
What is androgenetic alopecia?
Almost every woman eventually develops some degree of female pattern hair loss. It can start any time after the onset of puberty, but women tend to first notice it around menopause, when hair loss typically increases. The risk rises with age, and it's higher for women with a history of hair loss on either side of the family.
As the name suggests, androgenetic alopecia involves the action of the hormones called androgens, which are essential for normal male sexual development and have other important functions in both sexes, including sex drive and regulation of hair growth. The condition may be inherited and involve several different genes. It can also result from an underlying endocrine condition, such as overproduction of androgen or an androgen-secreting tumor on the ovary, pituitary, or adrenal gland. In either case, the alopecia is likely related to increased androgen activity. But unlike androgenetic alopecia in men, in women the precise role of androgens is harder to determine. On the chance that an androgen-secreting tumor is involved, it's important to measure androgen levels in women with clear female pattern hair loss.
How to stop thinning hair:
Hair loss treatment for women.
Medications and LLLT ( low level laser treatment) are the most common treatment for hair loss in women.
They include the following:
Minoxidil:
This drug was initially introduced as a treatment for high blood pressure, but people who took it noticed that they were growing hair in places where they had lost it. Research studies confirmed that minoxidil applied directly to the scalp could stimulate hair growth. As a result of the studies, the FDA originally approved over-the-counter 2% minoxidil to treat hair loss in women. Since then a 5% solution has also become available when a stronger solution is need for a woman's hair loss.
LLLT:
Low-intensity light is called low-level laser therapy (LLLT) which stimulates cellular activity in tissues. It is associated with a range of wavelengths from red through to infrared laser light that promotes tissue repair and regeneration. The overall effect of LLLT on body is called photobiomodulation.[1] The “optical window” for biological tissue is approximately 650–1200 nm. The tissue penetration is maximum at these wavelengths, and thus red or near-infrared light (600–950 nm) is utilized in LLLT.[2,3] LLLT has been reported to stimulate hair growth in men and women in androgenetic alopecia (AGA) and was approved by the US FDA in 2007. It is assumed to stimulate anagen phase re-entry in telogen hair follicles (HFs), prolong the duration of anagen phase, and increase rates of proliferation in active anagen HFs. In addition, it also helps to promote reparative regeneration, which occurs during wound healing, and physiological regeneration, which occurs during the hair cycle, which relies heavily on cell proliferation. These laser actions may normalize physiological regeneration of scalp HFs affected in various hair loss disorders such as male and female AGA, alopecia areata (AA), and chemotherapy-induced hair loss.
Comentários